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ABSTRACT 
In object recognition, there are two sets of edge-texture features and discriminative Robust Local Binary Pattern 

(DRLBP) and Ternary Pattern (DRLTP). By knowing the limitations of Local Binary Pattern (LBP), Local Ternary 

Pattern (LTP) and Robust LBP (RLBP). DRLBP and DRLTP are proposed with new features to solve the problem of 

discrimination between a bright object against a dark background and vice-versa inherent in LBP and LTP.  DRLBP 

also solves the problem of RLBP whereby LBP codes and complements in the specific block are mapped to the same 

code. Furthermore, the proposed features maintain contrast information for representation of object contours discard 

by LBP, LTP, and RLBP. These features are tested on seven data sets like INRIA Human, Caltech Pedestrian, UIUC 

Car, Caltech 101, Caltech256 and Brodatz, with KTH-TIPS2. Results shows that the proposed features outperform 

the compared approaches on most data sets. 
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     INTRODUCTION
Object recognition has two main parts: recognition and 

detection. The objective of recognition is to classify an 

object into predefined categories. The aim of detection 

is to distinguish objects from the background. There 

are various object recognition challenges, like objects 

to be detected against cluttered, noisy backgrounds 

and other objects under different illumination and 

contrast environments. Proper feature representation is 

a crucial step in an object recognition system as it 

improves performance by discriminating the object 

from the background or other objects in different 

lightings and scene, a feature also simplifies the 

classification. The object recognition features are 

categorized into two groups - sparse and dense 

representations. In sparse feature representations the 

interest-point detectors used to identify structures like 

corners and blob. A feature created for the image patch 

around each point, the popular feature representations 

include Scale-Invariant Feature Transform (SIFT), 

Speeded Up Robust Feature, local steering kernel and 

principal curvature-based regions, region self-

similarity features, sparse color and the sparse parts 

based presentation. A comprehensive evaluation of 

sparse features can be found. Dense feature 

representations extracted at fixed locations in a 

detection window which is gaining popularity as they 

describe objects richly compared to sparse feature 

representations. Different feature representations such 

as Wavelet, Haar-features, Histogram of Oriented 

Gradients (HOG), Extended Histogram of Gradients, 

Feature Context, Local Binary Pattern (LBP), Local 

Ternary Pattern (LTP), Geometric-blur and Local 

Edge Orientation Histograms have been proposed over 

recent years. 

 

LBP is the most popular texture classification feature. 

It has also shown excellent face detection 

performance. It is robust to illumination and contrast 

variations as it only considers the signs of the pixel 

differences. A Histogramming LBP code makes the 

descriptor resistant to translations within the 

histogramming neighborhood. However, it is sensitive 

to noise and small fluctuations of pixel values. To 

handle this, Local Ternary Pattern (LTP) has been 

proposed. Comparison to LBP it has 2 thresholds 

which create 3 different states as compared to 2 in 

LBP. It is more resistant to noise and small pixel value 

variations compared to LBP and it also used for texture 

classification and face detection. However, for object 

recognition, LBP and LTP present two issues. They 

differentiate a bright object against a dark background. 

This increases the object intra-class variations which 
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is undesirable for most object recognitions. Robust 

LBP (RLBP) to map a LBP code and its complement 

to the minimum of both to solve the problem.  

 

DISCRIMINATIVE ROBUST LOCAL 

BINARY PATTERN 
An object has 2 distinct cues for differentiation, the 

object surface texture and the object shape formed by 

its boundary. The boundary often shows higher 

contrast between the object and the background than 

the texture of surface and differentiating the boundary 

with respect to the surface texture brings additional 

discriminatory information because the boundary 

contains the shape information. In order to be robust 

to illumination and contrast variations, LBP does not 

differentiate between a weak contrast local pattern and 

a strong contrast. It captures the object texture 

information. The histogramming of LBP codes only 

considers the frequencies of the codes i.e. the weight 

for each code is the same. This makes it difficult to 

differentiate a weak contrast local pattern and a strong 

contrast one. 

 

To mitigate this, it proposes to fuse edge and texture 

information in a single representation by modifying 

the way the codes are histogrammed. Instead of 

considering the code frequencies, it assign a weight, 

Wx,y, to each code which is then voted into the bin 

that represents the code.  The weight we choose is the 

pixel gradient magnitude which is computed as 

follows. The square root of the pixels is taken and after 

that the first order gradients are computed. The 

gradient magnitude at each pixel is then computed as 

𝑤𝑥,𝑦 = √𝐼𝑥
2 + 𝐼𝑦

2 where Ix and Iy are the first-order 

derivatives in the x and y directions while Wx,y is used 

to weighing LBP code. The stronger the pixel contrast, 

the larger the weight assigned to the pixel LBP code. 

By this way, if a LBP code covers both sides of a 

strong edge and its gradient magnitude is larger and by 

voting this into the bin of the LBP code, we take into 

account if the pattern in the local area is of a strong 

contrast, therefore the resulting feature will contain 

both edge and texture information in a single 

representation. The value of the ith weighted LBP bin 

of a M × N block is as follows: 

 

ℎ𝑙𝑏𝑝(𝑖) = ∑ ∑ 𝑤𝑥,𝑦𝛿(𝐿𝐵𝑃𝑥,𝑦𝑖)                     (1)

𝑁−1

𝑦=0

𝑀−1

𝑥=0

 

The RLBP histogram is created from (1) as 

follows: 

ℎ𝑟𝑙𝑏𝑝(𝑖) = ℎ𝑟𝑙𝑏𝑝(𝑖) + ℎ𝑙𝑏𝑝(2𝐵 − 1 − 𝑖),   0 < 𝑖

< 2𝐵−1                         (2) 

 

Where hrlbp (i) is the ith RLBP bin value. To mitigate 

the RLBP issue, consider the absolute difference 

between the bins of a LBP code and its complement to 

form Difference of LBP (DLBP) histogram as follows: 

 

ℎ𝑑𝑙𝑏𝑝(𝑖) = |ℎ𝑟𝑙𝑏𝑝(𝑖) + ℎ𝑙𝑏𝑝(2𝐵 − 1 − 𝑖)|,   0 < 𝑖

< 2𝐵−1              (3) 

 

Where hdlbp (i) is the ith DLBP bin value. The number 

of DLBP bins is 128 for B = 8. Using uniform codes, 

it is reduced upto 30.  Also for blocks that containing 

structures with both LBP codes and their 

complements, DLBP assigns small values to the 

mapped bins to differentiate structures from those 

having no complement codes within the block. 

The 2 histogram features, RLBP and DLBP, 

are concatenated to form Discriminative Robust LBP 

(DRLBP) as follows: 

ℎ𝑑𝑟𝑙𝑏𝑝(𝑗)

= {
ℎ𝑟𝑙𝑏𝑝(𝑗),    0 < 𝑗 < 2𝐵−1     

ℎ𝑑𝑙𝑏𝑝(𝑗 − 2𝐵−1 ),    2𝐵−1  < 𝑗 < 2𝐵   
             (4) 

 

For B = 8, the number of bins is 256 (128 + 128). Using 

uniform codes, it is reduced to 60 (30 + 30). 

 

 
Fig.1: Problem of Robust LBP (RLBP) and Robust LTP 

(RLTP). 6 local structures are shown in the first row and 

second row shows the RLBP features for each structure. 

In third row, RLTP features for each structure. RLBP 

and RLTP create the different structures in (a1) and (a2) 

similar as shown in (a3) and in (a4) and different 

structures in (b1) and (b2) similar as shown in (b3) and 

(b4). A similar situation can be observed in (c). 
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The PROPOESD DISCRIMINATIVE 

ROBUST LOCAL TERNARY PATTERN 
Robust Local Ternary Pattern 

LBP is sensitive to noise and small pixel value 

fluctuations. LTP solves this using 2 

thresholds to generate codes. It is more resistant to 

small pixel value variations and noise compared to 

LBP. However, it also has the same problem as LBP 

whereby it differentiates a bright object against a dark 

background and vice-versa. RLBP solves this problem 

for LBP by mapping a LBP code and its complement 

to the minimum of the two.  

 

However, RLBP cannot be applied to ULBP and 

LLBP of LTP. For a pair of object/background 

intensity inverted patterns, their ULBP codes are 

decomplements. Likewise their LLBP codes are also 

not complements. This is illustrated where 2 different 

cases of object/background inverted intensity patterns 

are shown in fig.(1). In Fig. 1(a1) and (a2), a case 

illustrating a neighborhood, where all 3 LTP states 

occur, is shown. From the two LTP codes, it is 

observed that the 2 patterns are simply intensity 

inverted also their corresponding ULBP codes are not 

complements. Thus their corresponding LLBP codes 

are also not complements. A similar situation is 

observed in (b1) and (b2) where only 2 LTP states are 

present and the ULBP and LLBP codes are not 

complements of each other. Hence, RLBP cannot be 

applied to ULBP and LLBP to obtain a feature that is 

robust to the reversal intensity between the objects and 

background. 

 

In order to alleviate this problem of LTP, need to 

analyze the 3-state LTP definition in (2): 1, 0 and −1. 

The state of 0 represents regions of small variations, 

noise and uniform regions. It will not change when 

there is an inversion of brightness between the 

background and objects as the variations remain the 

same. Hence for a pair of brightness inverted 

object/background patterns, only the state of −1 is 

inverted to 1 and vice-versa. Hence, for every LTP 

code, we can find its corresponding inverted code, for 

instance, −1-100 1100 has an inverted code 1100 −1-

100. If both codes are mapped to a one bin then a 

feature is robust to the reversal in intensity between 

the objects and background can be obtained

 
Fig.2: Illustration of ULBP and LLBP codes of LTP for 2 

situations where the intensities are reversed. It can be 

seen that the ULBP and LLBP codes are reversed for the 

2 situations. 

 

The maximum of a LTP code and its inverted 

representation is chosen. It name as Robust LTP 

(RLTP). Mathematically, RLTP is formulated as 

follows: 

 

𝑅𝐿𝑇𝑃𝑥𝑦 = max{𝐿𝑇𝑃𝑥, 𝑦 − 𝐿𝑇𝑃𝑥, 𝑦}                     (5) 

  

The RLTP code can then be split into “upper” and 

“lower” LBP codes. The “upper” code, URLBP, is 

expressed as follows: 

 

𝑈𝑅𝑃𝐿𝐵𝑃 = ∑ ℎ(𝑅𝐿𝑇𝑃𝑥, 𝑦, 𝑏)2𝑏

𝐵−1

𝑏=0

                (6) 

 

ℎ(𝑧) = {
1,   𝑧 = 1

0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

Where RLT Px,y,b represents the RLTP state value at 

the b-th location. The “lower” code, LRLBP, is 

computed as follows: 

 

𝐿𝑅𝑃𝐿𝐵𝑃 = ∑ ℎ′(𝑅𝐿𝑇𝑃𝑥, 𝑦, 𝑏)2𝑏

𝐵−1

𝑏=0

                    (7) 

 

ℎ′(𝑧) = {
1,   𝑧 = −1

0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

The most significant bit of LRLBP is 0 as the state at 

(B−1)th location of RLTP is either 0 or 1. Fig. 1(d) 

illustrates how RLTP alleviates the brightness reversal 

problem of object and background and observing that 

for the two situations, the RLTP features are the same. 
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Discriminative Robust Local Ternary 

Patterns(DRLTP) 

LTP and RLTP are also robust to illumination and 

contrast variations and only capture texture 

information. The kth weighted LTP bin value of a M × 

N image block is as follows: 

 

ℎ𝑙𝑡𝑝(𝑘) = ∑ ∑ 𝑤𝑥,𝑦𝛿(𝐿𝑇𝑃𝑥,𝑦)                       (8)

𝑁−1

𝑦=0

𝑀−1

𝑥=0

 

 

 
Fig. 3: Same DRLBPs and DRLTPs are produced for the 

two intensity reversed patterns in Fig. 1. The similarity 

values using histogram intersection is 1 for both features. 

 

EFFICIENT COMPUTATION OF DRLTP 

USING ULBP AND LLBPP 
Using LTP to find RLTP, DLTP and DRLTP is 

computationally intensive and requires a large storage 

requirement. For B = 8, the number of LTP codes is 

6561. To generate the RLTP and DLTP histograms 

from the LTP histogram, there are 3280 addition and 

subtraction operations respectively. This is followed 

by 8 addition operations for each RLTP and DLTP 

code to find the “upper” LBP code and 8 addition 

operations to find the “lower” LBP code. If the 

“upper” and “lower” LBP codes of RLTP and DLTP 

can be produced directly from the split LBP codes of 

LTP, the computational complexity and storage 

requirements will be greatly reduced. 

 

The behaviors of ULBP (3) and LLBP (4) for 

object/background intensity inverted situations are 

analyzed as follows. Suppose there is a bright object 

against a dark background. Consider a neighborhood 

with an object boundary. Assume that the centre pixel 

resides in the background and differences between the 

object pixel values and the centre pixel value are larger 

than the threshold, T. The differences between the 

background pixel values and the centre pixel value are 

in between T and −T. The ULBP bits corresponding to 

the object are 1 while others are 0. Also the LLBP bits 

are all 0. When the brightness is now inverted for the 

situation, all ULBP bits are 0 and the LLBP bits 

corresponding to the object are 1 while the rest are 0. 

The brightness inversion turns LLBP into ULBP and 

ULBP into LLBP. 

 

Now, assume that the centre pixel does not belong to 

the background or object. Instead, it has a value 

between the bright object and dark background pixel 

values. The absolute differences of the object and the 

centre pixel and the background and the centre pixel 

are larger than T. The ULBP bits corresponding to the 

object are 1 while the rest are 0. The LLBP bits 

corresponding to the background are 1 while others are 

0, when the intensity is now inverted in the situation 

the ULBP bits corresponding to the background are all 

1 and remain are 0. Similarly, the LLBP bits 

corresponding to the object are 1 while the rest are 0. 

Again, the intensity inversion turns LLBP into ULBP 

and ULBP into LLBP. Because of this analysis, we 

find that the ULBP and LLBP codes for 

object/background intensity inverted situations are 

exchanged. If they are rearranged such that the 

“upper” and “lower” codes for both situations are 

same and RLTP is achieved. For any LTP code, the 

URLBP code is defined as follows: 

 

𝑈𝑅𝐿𝐵𝑃 = max{𝑈𝐿𝐵𝑃, 𝐿𝐿𝐵𝑃}                     (9) 

The LRPBP code is defined as follows: 

 

𝐿𝑅𝐿𝐵𝑃 = min{𝑈𝐿𝐵𝑃, 𝐿𝐿𝐵𝑃}                            (10) 

By producing URLBP and LRLBP codes for any LTP 

code. As RLTP is obtained in the split LBP code 

representation. For the situation where ULBP = 0 and 

LLBP = 0, only 1 LBP result is considered and 

assigned to LRLBP. In Fig.1 (a) and (b), for each case, 

the LBP codes of the 2 intensity inverted LTP codes 

are reversed. For instance, in Fig. 1(a1), the ULBP 

code is the LLBP code in (a2). Similarly, the LLBP 

code is the ULBP code in (a2).  By following (8) and 

(9), we can obtain the URLBP and LRLBP easily from 

ULBP and LLBP for both cases. 
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Fig. 4: Performance of DRLBP and DRLTP against LBP, 

LTP and RLBP. DRLTP outperforms all other methods. 

 

PERFORMANCE COMPARISON OF 

DRLBP AND DRLTP AGAINST LBP, LTP 

AND RLBP 
We compare the performance of DRLBP; DRLTP 

opposite to LBP, LTP and RLBP on INRIA for 

detection and on Caltech 101 for classification, INRIA 

training set contains 2416 cropped positive images and 

1218 uncropped negative images. The sliding image 

window size is 128 × 64 pixels. By randomly take 10 

samples from each negative image to obtain a total of 

12180 negative samples for training the linear SVM 

classifier. Bootstrapping is then performed across 

multiple scales at a scale step of 1.05 to obtain hard 

negatives which are added to the original training set 

for retraining. The INRIA test set consist of 288 

images and scanned over multiple scales at a scale step 

of 1.05, after that window stride is 8 pixels in the x and 

y directions. The miss rate (MR) against false positives 

per image (FPPI) (using log-log plots) is plotted to 

compare between different detectors. The log-average 

miss rate (LAMR) is used to summarize the detector 

performance which is computed by averaging the miss 

rates at nine evenly spaced FPPI rates in the range 

10−2 to 100. If any of the curves end before reaching 

100, the minimum miss rate achieved is used. 

 

CONCLUSION 
Here, the proposes 2 sets of novel edge-texture 

features, Discriminative Robust Local binary Pattern 

(DRLBP) and Ternary Pattern (DRLTP), for object 

recognition. The limitations of existing texture 

features, Local Binary Pattern (LBP), Local Ternary 

Pattern (LTP) and Robust LBP (RLBP), for object 

recognition are analyzed and LBP and LTP 

differentiate a bright object against a dark background 

and vice-versa. Because of this, the object intra-class 

variations larger. By choosing the minimum of a LBP 

code and its complement RLBP solves the LBP 

problem. However, RLBP detect LBP codes and 

respective complement in the same block to the same 

value.  

 

Furthermore, LBP, LTP and RLBP discard contrast 

information. This is not require for object texture and 

contour both contain discriminative information and 

capturing only the texture information, so the 

representation of contour is not effective. The new 

features, DRLBP and DRLTP proposed by analyzing 

the weaknesses of LBP, LTP and RLBP and they 

alleviate the problems of LBP, LTP and RLBP 

considering both the weighted sum and absolute 

difference of the bins of the LBP and LTP codes with 

their respective complement codes. New features are 

robust to image variations caused by the intensity 

inversion and are discriminative to the image 

structures within the histogram block. The results of 

the proposed features on 7 data set and compare them 

with several methods for object recognition. Results 

shows that the proposed features outperform the 

compared recognition approaches on most data sets. 
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